
KIT – The Research University in the Helmholtz Association www.kit.edu

Robotics I: Introduction to Robotics
Exercise 4 – Motion Planning

Jonas Kiemel, Tamim Asfour http://www.humanoids.kit.edu

Robotics I: Introduction to Robotics | Exercise 042

Exercises for Motion Planning

1. Voronoi diagram

2. Line Sweep

3. RRT*

4. A*

5. Potential Fields

Robotics I: Introduction to Robotics | Exercise 043

Motion Planning: Motivation

Generation of a collision-free trajectory w.r.t. various goals and constraints

Robotics I: Introduction to Robotics | Exercise 044

Motion Planning: Problem Statement

Given:
Configuration space 𝐶

Start configuration 𝒒𝑠𝑡𝑎𝑟𝑡 ∈ 𝐶

Goal configuration 𝒒𝑔𝑜𝑎𝑙 ∈ 𝐶

Required
Continuous trajectory

𝜏: 0,1 → 𝐶 with 𝜏 0 = 𝒒𝑠𝑡𝑎𝑟𝑡 and 𝜏 1 = 𝒒𝑔𝑜𝑎𝑙

With respect to

Kinematic constraints (joint limits, maximal acceleration, …)

Quality criteria (duration, energy, distance to obstacles, smoothness of the trajectory, …)

Additional contraints (upright position of the end-effector, …)

Robotics I: Introduction to Robotics | Exercise 045

Calculating collision-free trajectories

1. Step: Efficient representation of free space by network of paths (graph)
Voronoi diagram

Cell decomposition (e.g. using Line-Sweep)

2. Step: Search optimal path in graph
A*

Motion Planning for Mobile Robots: Graphs

Robotics I: Introduction to Robotics | Exercise 046

Motion Planning for Mobile Robots: Graphs

𝑞𝑠𝑡𝑎𝑟𝑡

𝑞𝑔𝑜𝑎𝑙
𝑞´𝑔𝑜𝑎𝑙

𝑞´𝑠𝑡𝑎𝑟𝑡

Robotics I: Introduction to Robotics | Exercise 047

Exercise 1: Voronoi Diagrams

Voronoi diagram for P

Robotics I: Introduction to Robotics | Exercise 048

Exercise 1: Voronoi Diagrams

1. Explain the terms
Voronoi region

Voronoi edge

Voronoi vertex

2. Find the Voronoi diagram for the
point set 𝑃:

Robotics I: Introduction to Robotics | Exercise 049

Exercise 1.1: Voronoi Terms, Region (1)

Robotics I: Introduction to Robotics | Exercise 0410

Exercise 1.1: Voronoi Terms, Region (2)

Voronoi region:
A region is defined as the set of points whose distance to a center is less than
the distance to all other centers.

Center of the region

Voronoi region

Other centers

Robotics I: Introduction to Robotics | Exercise 0411

Exercise 1.1: Voronoi Terms, Edge (1)

Robotics I: Introduction to Robotics | Exercise 0412

Exercise 1.1: Voronoi Terms, Edge (2)

Voronoi edge:
All points of a Voronoi edge have the same distance to the centers of the
adjacent regions.

Adjacent centers

Voronoi edge

Other centers

Robotics I: Introduction to Robotics | Exercise 0413

Exercise 1.1: Voronoi Terms, Vertices (1)

Robotics I: Introduction to Robotics | Exercise 0414

Exercise 1.1: Voronoi Terms, Vertices (2)

Voronoi vertices:
Corners of the polygons/voronoi regions

Voronoi edges

Centers

Voronoi vertices

Robotics I: Introduction to Robotics | Exercise 0415

Exercise 1.2: Voronoi diagram for 𝑷 (1)

Robotics I: Introduction to Robotics | Exercise 0416

Exercise 1.2: Voronoi diagram for 𝑷 (2)

1. Recursively split the set
of points in half

Robotics I: Introduction to Robotics | Exercise 0417

Exercise 1.2: Voronoi diagram for 𝑷 (3)

1. Recursively split the set
of points in half

2. Solve the base case

Robotics I: Introduction to Robotics | Exercise 0418

Exercise 1.2: Voronoi diagram for 𝑷 (4)

1. Recursively split the set
of points in half

2. Solve the base case

Robotics I: Introduction to Robotics | Exercise 0419

Exercise 1.2: Voronoi diagram for 𝑷 (5)

1. Recursively split the set
of points in half

2. Solve the base case
• Perpendicular

bisector

Robotics I: Introduction to Robotics | Exercise 0420

Exercise 1.2: Voronoi diagram for 𝑷 (6)

1. Recursively split the set of
points in half

2. Solve the base case
• Perpendicular

bisector

Robotics I: Introduction to Robotics | Exercise 0421

Aufgabe 1.2: Voronoi-Diagramm für 𝑷 (7)

1. Recursively split the set
of points in half

2. Solve the base case
• Perpendicular

bisector

Robotics I: Introduction to Robotics | Exercise 0422

Exercise 1.2: Voronoi diagram for 𝑷 (8)

1. Recursively split the set
of points in half

2. Solve the base case
• Perpendicular

bisector
3. Connect neighbors

Robotics I: Introduction to Robotics | Exercise 0423

Exercise 1.2: Voronoi diagram for 𝑷 (9)

1. Recursively split the set
of points in half

2. Solve the base case
• Perpendicular

bisector
3. Connect neighbors

• Perpendicular
bisector

Robotics I: Introduction to Robotics | Exercise 0424

Exercise 1.2: Voronoi diagram for 𝑷 (10)

1. Recursively split the set
of points in half

2. Solve the base case
• Perpendicular

bisector
3. Connect neighbors

• Perpendicular
bisector

4. Close regions
• Shorten or

extend lines

Robotics I: Introduction to Robotics | Exercise 0425

Exercise 1.2: Voronoi diagram for 𝑷 (11)

1. Recursively split the set
of points in half

2. Solve the base case
• Perpendicular

bisector
3. Connect neighbors

• Perpendicular
bisector

4. Close regions
• Shorten or

extend lines

Robotics I: Introduction to Robotics | Exercise 0426

Exercise 1.2: Voronoi diagram for 𝑷 (12)

1. Recursively split the set
of points in half

2. Solve the base case
• Perpendicular

bisector
3. Connect neighbors

• Perpendicular
bisector

4. Close regions
• Shorten or

extend lines

Robotics I: Introduction to Robotics | Exercise 0427

Exercise 1: Voronoi diagram for 𝑷, Bonus

Which diagram
results if the point
set is divided
differently?

Robotics I: Introduction to Robotics | Exercise 0428

Exercise 1: Voronoi diagram for 𝑷, Bonus

Which diagram
results if the point
set is divided
differently?

Robotics I: Introduction to Robotics | Exercise 0429

Exercise 1: Voronoi diagram for 𝑷, Bonus

Can there be Voronoi
vertices where more than
three Voronoi edges come
together?

Robotics I: Introduction to Robotics | Exercise 0430

Exercise 1: Voronoi diagram for 𝑷, Bonus

Can there be Voronoi
vertices where more than
three Voronoi edges come
together?

Robotics I: Introduction to Robotics | Exercise 0431

Cell Decomposition

Approach:

1. decompose 𝐶𝑓𝑟𝑒𝑒 in cells, that make it easy to find a path between two

configurations within the cell

2. Represent the spatial layout by an adjacency graph

3. Search the optimal path from 𝒒𝑠𝑡𝑎𝑟𝑡 to 𝒒𝑔𝑜𝑎𝑙 in the graph

There are two kinds of cell decomposition:

Exact cell decomposition (e.g. using Line-Sweep)

Approximated cell decomposition

Robotics I: Introduction to Robotics | Exercise 0432

Exercise 2: Line-Sweep

1. Cell decomposition using Line-Sweep
2. Adjacency graph of the cells
3. Path between 𝑞𝑠𝑡𝑎𝑟𝑡 and 𝑞𝑔𝑜𝑎𝑙

𝑞𝑠𝑡𝑎𝑟𝑡
𝑞𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Exercise 0433

Exercise 2.1: Line-Sweep, Cell decomposition (1)

Robotics I: Introduction to Robotics | Exercise 0434

Exercise 2.1: Line-Sweep, Cell decomposition (2)

Robotics I: Introduction to Robotics | Exercise 0435

Exercise 2.1: Line-Sweep, Cell decomposition (1)

Numbering from left to right, then from top to bottom

Robotics I: Introduction to Robotics | Exercise 0436

Exercise 2.1: Line-Sweep, Cell decomposition (2)

Numbering from left to right, then from top to bottom

1

2 4

3 8

11 13

145

6 7

10

9 12

15

16 17 18 19 20 21

22

Robotics I: Introduction to Robotics | Exercise 0437

Exercise 2.2: Line-Sweep, Adjacency graph (1)

Robotics I: Introduction to Robotics | Exercise 0438

Exercise 2.2: Line-Sweep, Adjacency graph (2)

22

1

2

3

4

5

7

8

12 14

17 196

9

10 11 13

15

16

18 20 21

Robotics I: Introduction to Robotics | Exercise 0439

Exercise 2.3: Line-Sweep, Path from start to goal (1)

22

1

2

3

4

5

7

8

12 14

17 196

9

10 11 13

15

16

18 20 21

𝑞𝑠𝑡𝑎𝑟𝑡

𝑞𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Exercise 0440

Exercise 2.3: Line-Sweep, Path from start to goal (2)

Path from 𝑞𝑠𝑡𝑎𝑟𝑡 to 𝑞𝑔𝑜𝑎𝑙:

6, 7, 9, 12, 14, 15, 17, 18, 19, 20, 21, 22

22

1

2

3

4

5

7

8

12 14

17 196

9

10 11 13

15

16

18 20 21

𝑞𝑔𝑜𝑎𝑙

𝑞𝑠𝑡𝑎𝑟𝑡

Robotics I: Introduction to Robotics | Exercise 0441

RRT: Principle (1)

The shape of 𝐶𝑜𝑏𝑠 in the configuration
space is unknown

Initialization of the RRT
Create empty tree 𝑇

Insert 𝒒𝑠𝑡𝑎𝑟𝑡 into 𝑇

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝐶𝑜𝑏𝑠

Robotics I: Introduction to Robotics | Exercise 0442

RRT: Principle (2)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑔𝑜𝑎𝑙

𝐶𝑜𝑏𝑠

Robotics I: Introduction to Robotics | Exercise 0443

RRT: Principle (3)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝑞𝑠𝑡𝑎𝑟𝑡 = 𝑞𝑛𝑛
𝒒𝑠

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Exercise 0444

RRT: Principle (4)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝑞𝑠𝑡𝑎𝑟𝑡 = 𝑞𝑛𝑛
𝒒𝑠

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

𝑑

Robotics I: Introduction to Robotics | Exercise 0445

RRT: Principle (5)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

collision-free

𝑞𝑠𝑡𝑎𝑟𝑡

Robotics I: Introduction to Robotics | Exercise 0446

RRT: Principle (6)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝑞𝑠𝑡𝑎𝑟𝑡

𝒒𝑛𝑛

𝑑 𝒒𝑠

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

collision-free

Robotics I: Introduction to Robotics | Exercise 0447

RRT: Principle (7)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑛𝑛

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

𝒒𝑠

Robotics I: Introduction to Robotics | Exercise 0448

RRT: Principle (8)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝒒𝑠𝑡𝑎𝑟𝑡

𝒒𝑛𝑛

𝒒𝑠

collision!
𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Exercise 0449

RRT: Principle (9)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

𝒒𝑠𝑡𝑎𝑟𝑡

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Exercise 0450

RRT: Principle (10)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

Check in every kth step whether 𝒒𝑔𝑜𝑎𝑙 can
be connected to 𝑇 𝒒𝑠𝑡𝑎𝑟𝑡

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Exercise 0451

RRT: Principle (11)

Iteration
1. Sample a point 𝒒𝑠
2. Determine the next neighbor 𝒒𝑛𝑛 in 𝑇

3. Add points on the connection between
𝒒𝑠 and 𝒒𝑛𝑛 to 𝑇
• With step size 𝑑

• Check every part of the path for collision
with 𝐶𝑜𝑏𝑠

• Stop when a collision has been detected

4. Go to 1.

Check in every kth step whether 𝒒𝑔𝑜𝑎𝑙 can
be connected to 𝑇

Found a solution

𝒒𝑠𝑡𝑎𝑟𝑡

𝐶𝑜𝑏𝑠

𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Exercise 0452

RRT*

Problem: RRTs yield trajectories that are usually not optimal

RRT* optimizes the search space iteratively during the search

Optimization of the search tree is divided into two steps:

Calculate costs of each new node (e.g., length of the path from the start node)

Rewiring of the search tree by adding new nodes

Disadvantage:

Longer runtime (up to a factor of 30 in comparison to uni-directional RRT)

Uni-directional approach

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.
The International Journal of Robotics Research, 30(7):846–894, Jan. 2011.

Robotics I: Introduction to Robotics | Exercise 0453

Exercise 3: RRT*

1. Explain how the node 𝑞𝑛𝑒𝑤 was
determined.

2. Calculate the path costs for the nodes
𝑞1, … , 𝑞9, 𝑞𝑛𝑒𝑤

3. Describe the RRT* function
𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟)

4. Which nodes are taken into account for
the Rewire step?

5. Draw the connections after the
Rewire step.

1𝒒1

𝒒2

𝒒3 𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

𝑟

The tree 𝑇 shows an intermediate step of RRT*

Nodes 𝑞1, … , 𝑞9
Connection costs indicated on the edges

𝑞𝑛𝑒𝑤 added in the current iteration step

𝒒𝑠

Robotics I: Introduction to Robotics | Exercise 0454

RRT*: Algorithm

1. 𝒒𝑠 = 𝑆𝑎𝑚𝑝𝑙𝑒𝑅𝑎𝑛𝑑𝑜𝑚(𝐶) // Sample random configuration

2. 𝒒𝑛𝑛 = 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟(𝒒𝑠, 𝑇) // Determine the nearest neighbor

3. 𝒒𝑛𝑒𝑤 = 𝑆𝑡𝑒𝑒𝑟(𝒒𝑛𝑛, 𝒒𝑠, 𝑑) // Go a step in the direction of 𝒒𝑠

4. 𝑖𝑓 ! 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒𝑃𝑎𝑡ℎ 𝒒𝑛𝑛 , 𝒒𝑛𝑒𝑤 : 𝑔𝑜𝑡𝑜 1 // Is the path collision-free?

5. 𝑄𝑛𝑒𝑎𝑟 = 𝑁𝑒𝑎𝑟(𝑇, 𝒒𝑛𝑒𝑤 , 𝑟) // All points with a distance to 𝒒𝑛𝑒𝑤 of at most 𝑟

6. 𝒒𝑚𝑖𝑛 = 𝑀𝑖𝑛𝐶𝑜𝑠𝑡𝑃𝑎𝑡ℎ(𝑄𝑛𝑒𝑎𝑟 , 𝒒𝑛𝑒𝑤) // 𝐶𝑜𝑠𝑡 𝒒𝑚𝑖𝑛 + 𝐶𝑜𝑠𝑡 𝒒𝑚𝑖𝑛 , 𝒒𝑛𝑒𝑤 minimal

7. 𝐴𝑑𝑑𝑃𝑎𝑡ℎ(𝑇, 𝒒𝑚𝑖𝑛, 𝒒𝑛𝑒𝑤) // Add path from 𝒒𝑚𝑖𝑛 to 𝒒𝑛𝑒𝑤

8. 𝑅𝑒𝑤𝑖𝑟𝑒(𝑇, 𝒒𝑛𝑒𝑤 , 𝑄𝑛𝑒𝑎𝑟) // Check edges to nodes in 𝑄𝑛𝑒𝑎𝑟

9. 𝑖𝑓 ! 𝑇𝑖𝑚𝑒𝑜𝑢𝑡: 𝑔𝑜𝑡𝑜 1 // Next iteration

Robotics I: Introduction to Robotics | Exercise 0455

Exercise 3.1: How was 𝑞𝑛𝑒𝑤 determined? (1)

1𝒒1

𝒒2

𝒒3 𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9

2
1

2
1

1
3

4

𝒒𝑠

Robotics I: Introduction to Robotics | Exercise 0456

Exercise 3.1: How was 𝑞𝑛𝑒𝑤 determined? (2)

1𝒒1

𝒒2

𝒒3 𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9

2
1

2
1

1
3

4

𝒒𝑠

𝒒𝑛𝑒𝑤 = 𝑆𝑡𝑒𝑒𝑟 𝒒𝑛𝑛, 𝒒𝑠, 𝑑

𝒒𝑠: Current sample

𝒒𝑛𝑛: Nearest neighbor to 𝒒𝑠
𝑑: Step size

Robotics I: Introduction to Robotics | Exercise 0457

Exercise 3.1: How was 𝑞𝑛𝑒𝑤 determined? (3)

1𝒒1

𝒒2

𝒒3 𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9

2
1

2
1

1
3

4

𝒒𝑛𝑒𝑤 = 𝑆𝑡𝑒𝑒𝑟 𝒒𝑛𝑛, 𝒒𝑠, 𝑑

𝒒𝑠: Current sample

𝒒𝑛𝑛: Nearest neighbor to 𝒒𝑠
𝑑: Step size

𝒒𝑠
𝒒𝑛𝑛 = 𝒒7

𝒒𝑠

Robotics I: Introduction to Robotics | Exercise 0458

𝒒𝑛𝑒𝑤 = 𝑆𝑡𝑒𝑒𝑟 𝒒𝑛𝑛, 𝒒𝑠, 𝑑

𝒒𝑠: Current sample

𝒒𝑛𝑛: Nearest neighbor to 𝒒𝑠
𝑑: Step size

𝒒𝑠
𝒒𝑛𝑛 = 𝒒7
Connection from 𝒒𝑛𝑛 to 𝒒𝑠

Exercise 3.1: How was 𝑞𝑛𝑒𝑤 determined? (4)

1𝒒1

𝒒2

𝒒3 𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9

2
1

2
1

1
3

4

𝒒𝑠

Robotics I: Introduction to Robotics | Exercise 0459

𝒒𝑛𝑒𝑤 = 𝑆𝑡𝑒𝑒𝑟 𝒒𝑛𝑛, 𝒒𝑠, 𝑑

𝒒𝑠: Current sample

𝒒𝑛𝑛: Nearest neighbor to 𝒒𝑠
𝑑: Step size

𝒒𝑠
𝒒𝑛𝑛 = 𝒒7
Connection from 𝒒𝑛𝑛 to 𝒒𝑠
Connection with step size 𝑑 = 1

𝒒𝑛𝑒𝑤

Exercise 3.1: How was 𝑞𝑛𝑒𝑤 determined? (5)

1𝒒1

𝒒2

𝒒3 𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9

𝒒𝑠

2
1

2
1

1
3

4

𝑑 = 1

𝒒𝑛𝑒𝑤

Robotics I: Introduction to Robotics | Exercise 0460

Exercise 3: RRT*

1. Explain how the node 𝑞𝑛𝑒𝑤 was
determined.

2. Calculate the path costs for the nodes
𝑞1, … , 𝑞9, 𝑞𝑛𝑒𝑤

3. Describe the RRT* function
𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟)

4. Which nodes are taken into account for
the Rewire step?

5. Draw the connections after the
Rewire step.

1𝒒1

𝒒2

𝒒3 𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

𝑟

The tree 𝑇 shows an intermediate step of RRT*

Nodes 𝑞1, … , 𝑞9
Connection costs indicated on the edges

𝑞𝑛𝑒𝑤 added in the current iteration step

𝒒𝑠

Robotics I: Introduction to Robotics | Exercise 0461

Exercise 3.2: Path costs for 𝑞1, … , 𝑞9, 𝑞𝑛𝑒𝑤 (1)

Node Path costs

𝒒1 = 𝒒𝑠𝑡𝑎𝑟𝑡

𝒒2

𝒒3

𝒒4

𝒒5

𝒒6

𝒒7

𝒒8

𝒒9

𝒒𝑛𝑒𝑤

1
𝒒1

𝒒2

𝒒3 𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

Robotics I: Introduction to Robotics | Exercise 0462

Exercise 3.2: Path costs for 𝑞1, … , 𝑞9, 𝑞𝑛𝑒𝑤 (2)

Node Path costs

𝒒1 0

𝒒2 𝑐 𝒒1 + 1 = 0 + 1 = 1

𝒒3 𝑐 𝒒2 + 2 = 1 + 2 = 3

𝒒4 𝑐 𝒒3 + 1 = 3 + 1 = 4

𝒒5 𝑐 𝒒4 + 2 = 4 + 2 = 6

𝒒6

𝒒7

𝒒8

𝒒9

𝒒𝑛𝑒𝑤

1
𝒒1

𝒒2

𝒒3 𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

Robotics I: Introduction to Robotics | Exercise 0463

Exercise 3.2: Path costs for 𝑞1, … , 𝑞9, 𝑞𝑛𝑒𝑤 (3)

Node Path costs

𝒒1 0

𝒒2 1

𝒒3 3

𝒒4 4

𝒒5 6

𝒒6 𝑐 𝒒5 + 1 = 6 + 1 = 7

𝒒7 𝑐 𝒒5 + 1 = 6 + 1 = 7

𝒒8 𝑐 𝒒7 + 3 = 7 + 3 = 10

𝒒9 𝑐 𝒒5 + 4 = 6 + 4 = 10

𝒒𝑛𝑒𝑤 𝑐 𝒒7 + 1 = 7 + 1 = 8

1
𝒒1

𝒒2

𝒒3 𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

Robotics I: Introduction to Robotics | Exercise 0464

Exercise 3: RRT*

1. Explain how the node 𝑞𝑛𝑒𝑤 was
determined.

2. Calculate the path costs for the nodes
𝑞1, … , 𝑞9, 𝑞𝑛𝑒𝑤

3. Describe the RRT* function
𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟)

4. Which nodes are taken into account for
the Rewire step?

5. Draw the connections after the
Rewire step.

1𝒒1

𝒒2

𝒒3 𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

𝑟

The tree 𝑇 shows an intermediate step of RRT*

Nodes 𝑞1, … , 𝑞9
Connection costs indicated on the edges

𝑞𝑛𝑒𝑤 added in the current iteration step

𝒒𝑠

Robotics I: Introduction to Robotics | Exercise 0465

Exercise 3.3: RRT* Function 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟) (1)

𝑄𝑛𝑒𝑎𝑟 = 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟)

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

Robotics I: Introduction to Robotics | Exercise 0466

Exercise 3.3: RRT* Function 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟) (2)

𝑄𝑛𝑒𝑎𝑟 = 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟)
𝑇: Tree

𝑞𝑛𝑒𝑤: New node in the tree

𝑟: Max. distance to determine
neighboring nodes

𝑄𝑛𝑒𝑎𝑟: Set of neighboring nodes with
distance < 𝑟

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

𝑟

Robotics I: Introduction to Robotics | Exercise 0467

Exercise 3.3: RRT* Function 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟) (3)

𝑄𝑛𝑒𝑎𝑟 = 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟)
𝑇: Tree

𝑞𝑛𝑒𝑤: New node in the tree

𝑟: Max. distance to determine
neighboring nodes

𝑄𝑛𝑒𝑎𝑟: Set of neighboring nodes with
distance < 𝑟

𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟) determines all
nodes from 𝑇 whose distance to
𝑞𝑛𝑒𝑤 is at most 𝑟.

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

𝑟

Robotics I: Introduction to Robotics | Exercise 0468

Exercise 3.4: Nodes for the Rewire step (1)

𝑄𝑛𝑒𝑎𝑟 = 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟)
𝑇: Tree

𝑞𝑛𝑒𝑤: New node in the tree

𝑟: Max. distance to determine
neighboring nodes

𝑄𝑛𝑒𝑎𝑟: Set of neighboring nodes with
distance < 𝑟

𝑄𝑛𝑒𝑎𝑟 = {

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

𝑟

Robotics I: Introduction to Robotics | Exercise 0469

Exercise 3.4: Nodes for the Rewire step (2)

𝑄𝑛𝑒𝑎𝑟 = 𝑁𝑒𝑎𝑟(𝑇, 𝑞𝑛𝑒𝑤, 𝑟)
𝑇: Tree

𝑞𝑛𝑒𝑤: New node in the tree

𝑟: Max. distance to determine
neighboring nodes

𝑄𝑛𝑒𝑎𝑟: Set of neighboring nodes with
distance < 𝑟

𝑄𝑛𝑒𝑎𝑟 = {𝒒5, 𝒒7, 𝒒8, 𝒒9}

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

𝑟

Nodes in 𝑄𝑛𝑒𝑎𝑟

Robotics I: Introduction to Robotics | Exercise 0470

Exercise 3.5: Rewire step (1)

𝑄𝑛𝑒𝑎𝑟 = {𝒒5, 𝒒7, 𝒒8, 𝒒9}

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

𝑟

Nodes in 𝑄𝑛𝑒𝑎𝑟

Robotics I: Introduction to Robotics | Exercise 0471

Exercise 3.5: Rewire step (2)

𝑄𝑛𝑒𝑎𝑟 = {𝒒5, 𝒒7, 𝒒8, 𝒒9}

𝒒7 is already connected to 𝒒𝑛𝑒𝑤

𝒒5 is part of the path with the
minimum cost to 𝒒1

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

𝑟

Nodes in 𝑄𝑛𝑒𝑎𝑟

Robotics I: Introduction to Robotics | Exercise 0472

Exercise 3.5: Rewire step (3)

𝑄𝑛𝑒𝑎𝑟 = 𝒒5, 𝒒7, 𝒒8, 𝒒9
Costs
𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤 = 8

𝐶𝑜𝑠𝑡 𝒒5 = 6

𝐶𝑜𝑠𝑡 𝒒8 = 10

𝐶𝑜𝑠𝑡 𝒒9 = 10

𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤, 𝒒8 = 1

Rewire 𝒒8:

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

𝑟

Nodes in 𝑄𝑛𝑒𝑎𝑟
Node under consideration

Robotics I: Introduction to Robotics | Exercise 0473

Exercise 3.5: Rewire step (4)

𝑄𝑛𝑒𝑎𝑟 = 𝒒5, 𝒒7, 𝒒8, 𝒒9
Costs
𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤 = 8

𝐶𝑜𝑠𝑡 𝒒5 = 6

𝐶𝑜𝑠𝑡 𝒒8 = 10

𝐶𝑜𝑠𝑡 𝒒9 = 10

𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤, 𝒒8 = 1

Rewire 𝒒8:
𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤 + 𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤, 𝒒8 = 8 + 1

9 < 𝐶𝑜𝑠𝑡 𝒒8 = 10
 Rewiring

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1
3

4

1

𝑟

Nodes in 𝑄𝑛𝑒𝑎𝑟

1

Node under consideration

Robotics I: Introduction to Robotics | Exercise 0474

Exercise 3.5: Rewire step (5)

𝑄𝑛𝑒𝑎𝑟 = 𝒒5, 𝒒7, 𝒒8, 𝒒9
Costs
𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤 = 8

𝐶𝑜𝑠𝑡 𝒒5 = 6

𝐶𝑜𝑠𝑡 𝒒8 = 10

𝐶𝑜𝑠𝑡 𝒒9 = 10

𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤, 𝒒9 = 1

Rewire 𝒒9:

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1 4

1

𝑟

Nodes in 𝑄𝑛𝑒𝑎𝑟

1

Node under consideration

Robotics I: Introduction to Robotics | Exercise 0475

Exercise 3.5: Rewire step (6)

𝑄𝑛𝑒𝑎𝑟 = 𝒒5, 𝒒7, 𝒒8, 𝒒9
Costs
𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤 = 8

𝐶𝑜𝑠𝑡 𝒒5 = 6

𝐶𝑜𝑠𝑡 𝒒8 = 10

𝐶𝑜𝑠𝑡 𝒒9 = 10

𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤, 𝒒9 = 1

Rewire 𝒒9:
𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤 + 𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤, 𝒒9 = 8 + 1

9 < 𝐶𝑜𝑠𝑡 𝒒9 = 10
 Rewiring

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1 4

1

𝑟

Nodes in 𝑄𝑛𝑒𝑎𝑟

1
1

Node under consideration

Robotics I: Introduction to Robotics | Exercise 0476

Exercise 3.5: Rewire step (7)

𝑄𝑛𝑒𝑎𝑟 = 𝒒5, 𝒒7, 𝒒8, 𝒒9
Costs
𝐶𝑜𝑠𝑡 𝒒𝑛𝑒𝑤 = 8

𝐶𝑜𝑠𝑡 𝒒5 = 6

𝐶𝑜𝑠𝑡 𝒒8 = 10

𝐶𝑜𝑠𝑡 𝒒9 = 10

Outcome:
Rewire: 𝒒𝑛𝑒𝑤 → 𝒒8
Rewire: 𝒒𝑛𝑒𝑤 → 𝒒9

1𝒒1

𝒒2

𝒒4

𝒒6

𝒒5
𝒒7

𝒒8

𝒒9
𝒒𝑛𝑒𝑤

2
1

2
1

1

1

𝑟

Nodes in 𝑄𝑛𝑒𝑎𝑟

1
1

Node under consideration

Robotics I: Introduction to Robotics | Exercise 0477

Exercise 3: RRT*, Bonus

How does the RRT* algorithm differ from the RRT algorithm?

a) Unlike RRT, RRT* does not require any preprocessing

b) The search tree is optimized iteratively during the search

c) The search is conducted from both sides (𝒒𝑠𝑡𝑎𝑟𝑡 and 𝒒𝑔𝑜𝑎𝑙)

Robotics I: Introduction to Robotics | Exercise 0478

Exercise 3: RRT*, Bonus

How does the RRT* algorithm differ from the RRT algorithm?

a) Unlike RRT, RRT* does not require any preprocessing

b) The search tree is optimized iteratively during the search
Correct: This is the purpose of the “Rewire” step, see previous slides

c) The search is conducted from both sides (𝒒𝑠𝑡𝑎𝑟𝑡 and 𝒒𝑔𝑜𝑎𝑙)

Robotics I: Introduction to Robotics | Exercise 0479

Exercise 3: RRT*, Bonus

How does the RRT* algorithm differ from the RRT algorithm?

a) Unlike RRT, RRT* does not require any preprocessing
Wrong: Neither RRT nor RRT* require preprocessing.
However, preprocessing is required for probabilistic road maps.

b) The search tree is optimized iteratively during the search
Correct: This is the purpose of the “Rewire” step, see previous slides

c) The search is conducted from both sides (𝒒𝑠𝑡𝑎𝑟𝑡 and 𝒒𝑔𝑜𝑎𝑙)
Wrong: This applies to bidirectional RRTs like RRT Connect

Robotics I: Introduction to Robotics | Exercise 0480

Exercise 4: A*-Algorithm

1. Find the optimal path from 𝑣2 to 𝑣13
Only horizontal and vertical movements allowed

Costs:
Entering a grey cell: 1

Entering a yellow cell: 4

Heuristic ℎ:
Euclidean distance to 𝑣13
(e.g. from 𝑣11to 𝑣13: ℎ(𝑣11) = 2)

2. Why is the Euclidean distance a suitable
heuristic?

3. When does the A* algorithm find a valid
solution?

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0481

A*- Algorithm (1)

Iterative approach

Two node sets:
Open Set 𝑂: nodes not visited yet

Closed Set 𝐶: nodes already visited

Update: for a visited node 𝑣𝑛:
Predecessor node 𝑝𝑟𝑒𝑑(𝑣𝑛)

Accumulated cost to reach 𝑣𝑛: 𝑔 𝑣𝑛
Total cost 𝑓 𝑣𝑛 = 𝑔 𝑣𝑛 + ℎ 𝑣𝑛 , with ℎ 𝑣𝑛 being a heuristic estimating the cost to 𝑣𝑔𝑜𝑎𝑙

Initialize

𝑂 = 𝑣𝑠
𝐶 = {}

𝑔 𝑣𝑖 = ∞ 1 ≤ 𝑖 ≤ 𝐾

𝑔 𝑣𝑠 = 0

Robotics I: Introduction to Robotics | Exercise 0482

A*- Algorithm (2)

Algorithm
while 𝑂 ≠ ∅

Determine next node to expand
find 𝑣𝑖 ∈ 𝑂 with minimal 𝑓 𝑣𝑖 = 𝑔 𝑣𝑖 + ℎ(𝑣𝑖)

if 𝑣𝑖 = 𝑣𝑔𝑜𝑎𝑙
found solution: traverse predecessor of 𝑣𝑖 until 𝑣𝑠𝑡𝑎𝑟𝑡 is reached

𝑂. 𝑟𝑒𝑚𝑜𝑣𝑒 𝑣𝑖

𝐶. 𝑎𝑑𝑑 𝑣𝑖

Update all successors 𝑣𝑗 of 𝑣𝑖
if 𝑣𝑗 ∈ 𝐶, skip 𝑣𝑗

if 𝑣𝑗 ∉ 𝑂, 𝑂. 𝑎𝑑𝑑(𝑣𝑗)

if 𝑔 𝑣𝑖 + 𝑐𝑜𝑠𝑡 𝑣𝑖 , 𝑣𝑗 < 𝑔 𝑣𝑗

𝑔(𝑣𝑗) = 𝑔(𝑣𝑖) + 𝑐𝑜𝑠𝑡(𝑣𝑖 , 𝑣𝑗)

ℎ 𝑣𝑗 = ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑣𝑗 , 𝑣𝑔𝑜𝑎𝑙

𝑝𝑟𝑒𝑑 𝑣𝑗 = 𝑣𝑖

Robotics I: Introduction to Robotics | Exercise 0483

Exercise 4.1: A*- Algorithm, Initialization

Initialization:
𝑂 = 𝑣2

𝑓 𝑣2 = 0 + ℎ 𝑣2 = 42 + 12 ≈ 4.12

𝐶 = { }

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0484

Exercise 4.1: A*- Algorithm, Step 1 (1)

State:
𝑂 = 𝑣2

𝑓 𝑣2 = 0 + ℎ 𝑣2 = 42 + 12 ≈ 4.12

𝐶 = { }

Update:
Expand 𝒗𝟐

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0485

Exercise 4.1: A*- Algorithm, Step 1 (2)

State:
𝑂 = 𝑣2

𝑓 𝑣2 = 0 + ℎ 𝑣2 = 42 + 12 ≈ 4.12

𝐶 = { }

Update:
Expand 𝒗𝟐
𝑂 = 𝒗𝟏, 𝒗𝟑, 𝒗𝟓

𝑓 𝑣1 = 1 + ℎ 𝑣1 = 1 + 4 = 5

𝑓 𝑣3 = 1 + ℎ 𝑣3 = 1 + 42 + 22 ≈ 5.47

𝑓 𝑣5 = 4 + ℎ 𝑣5 = 4 + 32 + 12 ≈ 7.16

𝐶 = {𝒗𝟐}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0486

Exercise 4.1: A*- Algorithm, Step 2 (1)

State:
𝑂 = 𝑣1, 𝑣3, 𝑣5

𝑓 𝑣1 = 5

𝑓 𝑣3 ≈ 5.47

𝑓 𝑣5 ≈ 7.16

𝐶 = {𝑣2}

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0487

Exercise 4.1: A*- Algorithm, Step 2 (2)

State:
𝑂 = 𝑣1, 𝑣3, 𝑣5

𝑓 𝑣1 = 5

𝑓 𝑣3 ≈ 5.47

𝑓 𝑣5 ≈ 7.16

𝐶 = {𝑣2}

Update:
Expand 𝒗𝟏
𝑂 = 𝑣3, 𝑣5, 𝒗𝟒

𝑓 𝑣4 = 2 + ℎ 𝑣4 = 2 + 3 = 5

𝐶 = {𝑣2, 𝒗𝟏}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0488

Exercise 4.1: A*- Algorithm, Step 3 (1)

State:
𝑂 = 𝑣3, 𝑣4, 𝑣5

𝑓 𝑣3 ≈ 5.47

𝑓 𝑣4 = 5

𝑓 𝑣5 ≈ 7.16

𝐶 = {𝑣1, 𝑣2}

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0489

Exercise 4.1: A*- Algorithm, Step 3 (2)

State:
𝑂 = 𝑣3, 𝑣4, 𝑣5

𝑓 𝑣3 ≈ 5.47

𝑓 𝑣4 = 5

𝑓 𝑣5 ≈ 7.16

𝐶 = {𝑣1, 𝑣2}

Update:
Expand 𝒗𝟒
𝑂 = 𝑣3, 𝒗𝟓, 𝒗𝟕

𝑔 𝑣4 + 𝑐𝑜𝑠𝑡 𝑣4, 𝑣5 = 2 + 4 = 6 ≥ 𝑔 𝑣5 = 4
⇒ No update

𝑓 𝑣7 = 6 + ℎ 𝑣7 = 6 + 2 = 8

𝐶 = {𝑣1, 𝑣2, 𝒗𝟒}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0490

Exercise 4.1: A*- Algorithm, Step 4 [optional] (1)

State:
𝑂 = 𝑣3, 𝑣5, 𝑣7

𝑓 𝑣3 ≈ 5.47

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝐶 = {𝑣1, 𝑣2, 𝑣4}

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0491

Exercise 4.1: A*- Algorithm, Step 4 [optional] (2)

State:
𝑂 = 𝑣3, 𝑣5, 𝑣7

𝑓 𝑣3 ≈ 5.47

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝐶 = {𝑣1, 𝑣2, 𝑣4}

Update:
Expand 𝒗𝟑
𝑂 = 𝑣5, 𝒗𝟔, 𝑣7

𝑓 𝑣6 = 2 + ℎ 𝑣6 = 2 + 32 + 22 ≈ 5.61

𝐶 = {𝑣1, 𝑣2, 𝑣4, 𝒗𝟑}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0492

Exercise 4.1: A*- Algorithm, Step 5 [optional] (1)

State:
𝑂 = 𝑣5, 𝑣6, 𝑣7

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣6 ≈ 5.47

𝑓 𝑣7 = 8

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0493

Exercise 4.1: A*- Algorithm, Step 5 [optional] (2)

State:
𝑂 = 𝑣5, 𝑣6, 𝑣7

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣6 ≈ 5.47

𝑓 𝑣7 = 8

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}

Update:
Expand 𝒗𝟔
𝑂 = 𝒗𝟓, 𝑣7, 𝒗𝟗

𝑔 𝑣6 + 𝑐𝑜𝑠𝑡 𝑣6, 𝑣5 = 2 + 4 = 6 ≥ 𝑔 𝑣5 = 4
⇒ Kein Update

𝑓 𝑣9 = 3 + ℎ 𝑣9 = 3 + 22 + 22 ≈ 5.83

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝒗𝟔}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0494

Exercise 4.1: A*- Algorithm, Step 6 [optional] (1)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣9

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣9 ≈ 5.83

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6}

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0495

Exercise 4.1: A*- Algorithm, Step 6 [optional] (2)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣9

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣9 ≈ 5.83

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6}

Update:
Expand 𝒗𝟗
𝑂 = 𝑣5, 𝑣7, 𝒗𝟖, 𝒗𝟏𝟐

𝑓 𝑣8 = 3 + 4 + ℎ 𝑣8 = 7 + 12 + 22 ≈ 9.24

𝑓 𝑣12 = 3 + 1 + ℎ 𝑣12 = 4 + 22 + 12 ≈ 6.24

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝒗𝟗}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0496

Exercise 4.1: A*- Algorithm, Step 7 [optional] (1)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝑣12

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣8 ≈ 9.24

𝑓 𝑣12 ≈ 6.24

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9}

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0497

Exercise 4.1: A*- Algorithm, Step 7 [optional] (2)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝑣12

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣8 ≈ 9.24

𝑓 𝑣12 ≈ 6.24

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9}

Update:
Expand 𝒗𝟏𝟐
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝒗𝟏𝟏, 𝒗𝟏𝟓

𝑓 𝑣11 = 4 + 4 + ℎ 𝑣11 = 8 + 12 + 12 ≈ 9.41

𝑓 𝑣15 = 4 + 1 + ℎ 𝑣15 = 5 + 2 = 7

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝒗𝟏𝟐}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0498

Exercise 4.1: A*- Algorithm, Step 8 [optional] (1)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝑣11, 𝑣15

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣8 ≈ 9.24

𝑓 𝑣11 ≈ 9.41

𝑓 𝑣15 = 7

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝑣12}

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 0499

Exercise 4.1: A*- Algorithm, Step 8 [optional] (2)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝑣11, 𝑣15

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣8 ≈ 9.24

𝑓 𝑣11 ≈ 9.41

𝑓 𝑣15 = 7

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝑣12}

Update:
Expand 𝒗𝟏𝟓
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝑣11, 𝒗𝟏𝟒

𝑓 𝑣14 = 5 + 1 + ℎ 𝑣14 = 6 + 1 = 7

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝑣12, 𝒗𝟏𝟓}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 04100

Exercise 4.1: A*- Algorithm, Step 9 [optional] (1)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝑣11, 𝑣14

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣8 ≈ 9.24

𝑓 𝑣11 ≈ 9.41

𝑓 𝑣14 = 7

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝑣12, 𝑣15}

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 04101

Exercise 4.1: A*- Algorithm, Step 9 [optional] (2)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝑣11, 𝑣14

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣8 ≈ 9.24

𝑓 𝑣11 ≈ 9.41

𝑓 𝑣14 = 7

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝑣12, 𝑣15}

Update:
Expand 𝒗𝟏𝟒
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝒗𝟏𝟏, 𝒗𝟏𝟑

𝑓 𝑣11 = 6 + 4 + ℎ 𝑣14 = 10 + 2 ≈ 11.41 > 9.41

𝑓 𝑣13 = 6 + 1 + ℎ 𝑣13 = 7 + 0 = 7

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝑣12, 𝒗𝟏𝟒, 𝑣15}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 04102

Exercise 4.1: A*- Algorithm, Step 10 [optional] (1)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝑣11, 𝑣13

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣8 ≈ 9.24

𝑓 𝑣11 ≈ 9.41

𝑓 𝑣13 = 7

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝑣12, 𝑣14, 𝑣15}

Update:

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 04103

Exercise 4.1: A*- Algorithm, Step 10 [optional] (2)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝑣11, 𝑣13

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣8 ≈ 9.24

𝑓 𝑣11 ≈ 9.41

𝑓 𝑣13 = 7

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝑣12, 𝑣14, 𝑣15}

Update:
Expand 𝒗𝟏𝟑
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝒗𝟏𝟎, 𝑣11

𝑓 𝑣10 = 7 + 4 + ℎ 𝑣10 = 11 + 1 = 12

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝑣12, 𝒗𝟏𝟑, 𝑣14, 𝑣15}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 04104

Exercise 4.1: A*- Algorithm, Step 11 [optional] (1)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝑣10, 𝑣11

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣8 ≈ 9.24

𝑓 𝑣10 ≈ 12

𝑓 𝑣11 ≈ 9.41

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝑣12, 𝑣13, 𝑣14, 𝑣15}

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 04105

Exercise 4.1: A*- Algorithm, Step 11 [optional] (2)

State:
𝑂 = 𝑣5, 𝑣7, 𝑣8, 𝑣10, 𝑣11

𝑓 𝑣5 ≈ 7.16

𝑓 𝑣7 = 8

𝑓 𝑣8 ≈ 9.24

𝑓 𝑣10 ≈ 12

𝑓 𝑣11 ≈ 9.41

𝐶 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣6, 𝑣9, 𝑣12, 𝑣13, 𝑣14, 𝑣15}

Termination:
Target node 𝑣13 was expanded ⇒ Goal is reached

Traverse predecessors of 𝑣13 to determine a path

⇒ 𝑣2, 𝑣3, 𝑣6, 𝑣9, 𝑣12, 𝑣15, 𝑣14, 𝑣13

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 04106

Exercise 4.2: A*- Algorithm, Suitable heuristic (1)

Only horizontal and vertical movements
allowed
Costs:

Entering a grey cell: 1
Entering a yellow cell: 4

Heuristic ℎ:
Euclidean distance to 𝑣13

Why is the Euclidean distance a suitable
heuristic in this task?

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 04107

Exercise 4.2: A*- Algorithm, Suitable heuristic (2)

Only horizontal and vertical movements
allowed
Costs:

Entering a grey cell: 1
Entering a yellow cell: 4

Heuristic ℎ:
Euclidean distance to 𝑣13

Why is the Euclidean distance a suitable
heuristic in this task?

Heuristic must not overestimate the
remaining costs to the goal state

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 04108

Exercise 4.2: A*- Algorithm, Suitable heuristic (3)

Only horizontal and vertical movements
allowed
Costs:

Entering a grey cell: 1
Entering a yellow cell: 4

Heuristic ℎ:
Euclidean distance to 𝑣13

Why is the Euclidean distance a suitable
heuristic in this task?

Heuristic must not overestimate the
remaining costs to the goal state
The Euclidean distance is suitable as the
cost to enter a cell is always ≥ 1

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 04109

Exercise 4.3: A*- Algorithm, Termination (1)

When does the A* algorithm find a valid solution?
a) When the next node to be expanded is the target node.

b) When the target node is added to the Open Set.

Justify your answer.

Robotics I: Introduction to Robotics | Exercise 04110

Exercise 4.3: A*- Algorithm, Termination (2)

Algorithm
while 𝑂 ≠ ∅

Determine next node to expand
find 𝑣𝑖 ∈ 𝑂 with minimal 𝑓 𝑣𝑖 = 𝑔 𝑣𝑖 + ℎ(𝑣𝑖)

if 𝑣𝑖 = 𝑣𝑔𝑜𝑎𝑙
found solution: traverse predecessor of 𝑣𝑖 until 𝑣𝑠𝑡𝑎𝑟𝑡 is reached

𝑂. 𝑟𝑒𝑚𝑜𝑣𝑒 𝑣𝑖

𝐶. 𝑎𝑑𝑑 𝑣𝑖

Update all succesors 𝑣𝑗 of 𝑣𝑖
if 𝑣𝑗 ∈ 𝐶, skip 𝑣𝑗

if 𝑣𝑗 ∉ 𝑂, 𝑂. 𝑎𝑑𝑑(𝑣𝑗)

if 𝑔 𝑣𝑖 + 𝑐𝑜𝑠𝑡 𝑣𝑖 , 𝑣𝑗 < 𝑔 𝑣𝑗

𝑔(𝑣𝑗) = 𝑔(𝑣𝑖) + 𝑐𝑜𝑠𝑡(𝑣𝑖 , 𝑣𝑗)

ℎ 𝑣𝑗 = ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑣𝑗 , 𝑣𝑔𝑜𝑎𝑙

𝑝𝑟𝑒𝑑 𝑣𝑗 = 𝑣𝑖

Robotics I: Introduction to Robotics | Exercise 04111

Exercise 4.3: A*- Algorithm, Termination (3)

Algorithm
while 𝑂 ≠ ∅

Determine next node to expand
find 𝑣𝑖 ∈ 𝑂 with minimal 𝑓 𝑣𝑖 = 𝑔 𝑣𝑖 + ℎ(𝑣𝑖)

if 𝑣𝑖 = 𝑣𝑔𝑜𝑎𝑙
found solution: traverse predecessor of 𝑣𝑖 until 𝑣𝑠𝑡𝑎𝑟𝑡 is reached

𝑂. 𝑟𝑒𝑚𝑜𝑣𝑒 𝑣𝑖

𝐶. 𝑎𝑑𝑑 𝑣𝑖

Update all succesors 𝑣𝑗 of 𝑣𝑖
if 𝑣𝑗 ∈ 𝐶, skip 𝑣𝑗

if 𝑣𝑗 ∉ 𝑂, 𝑂. 𝑎𝑑𝑑(𝑣𝑗)

if 𝑔 𝑣𝑖 + 𝑐𝑜𝑠𝑡 𝑣𝑖 , 𝑣𝑗 < 𝑔 𝑣𝑗

𝑔(𝑣𝑗) = 𝑔(𝑣𝑖) + 𝑐𝑜𝑠𝑡(𝑣𝑖 , 𝑣𝑗)

ℎ 𝑣𝑗 = ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑣𝑗 , 𝑣𝑔𝑜𝑎𝑙

𝑝𝑟𝑒𝑑 𝑣𝑗 = 𝑣𝑖

(a)

(b)

Robotics I: Introduction to Robotics | Exercise 04112

Exercise 4.3: A*- Algorithm, Termination (5)

When does the A* algorithm find a valid solution?
a) When the next node to be expanded is the target node.

b) When the target node is added to the Open Set.

Justify your answer.
Option (b), adding the target node to the Open Set:

Only one path to the target node was found

There may still be shorter paths to the target node

Algorithm cannot yet terminate

Option (a), expanding the target node:
There can be no shorter path to the target node
(provided that the heuristic is suitable)

Robotics I: Introduction to Robotics | Exercise 04113

Exercise 4: A*- Algorithm, Bonus

Bonus questions:

Is the Euclidean distance a suitable heuristic if
diagonal movements with equal costs are
permitted?

Is the Manhattan distance a valid heuristic for
the original problem?

If so, is the Manhattan distance a better or
worse heuristic than the Euclidean distance
for the original problem?

𝑣1 𝒗𝟐 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8 𝑣9

𝑣10 𝑣11 𝑣12

𝒗𝟏𝟑 𝑣14 𝑣15

Robotics I: Introduction to Robotics | Exercise 04114

Exercise 5: Potential fields

(0, 0)

1

2

3
4

5

2 4 6 8 10 12

6

𝒒𝑅 =
5
5

𝒒𝑟𝑒𝑝,1 =
4
3

, 𝒒𝑟𝑒𝑝,2 =
6
4

, 𝒒𝑟𝑒𝑝,3 =
4
5

𝒒𝑔𝑜𝑎𝑙 =
12
5

Robot: 𝒒𝑅
Obstacles:
𝒒𝑟𝑒𝑝,1, 𝒒𝑟𝑒𝑝,2, 𝒒𝑟𝑒𝑝,3

Goal: 𝒒𝑔𝑜𝑎𝑙

1. Which repulsive potentials act
on the robot with 𝜌0 = 5?

2. Determine 𝑈(𝒒𝑅) as the
sum of the acting potential fields.

3. Determine the direction in which the
robot would move.

Robotics I: Introduction to Robotics | Exercise 04115

Obstacles create a repulsive potential

The robot shall not be influenced for large distances to obstacles (> 𝜌0)

Example (FIRAS function):

𝜌 𝐪, 𝐪𝑜𝑏𝑠 = ‖𝒒 − 𝒒𝑜𝑏𝑠‖ is the distance between the robot and the obstacle

𝐹𝑟𝑒𝑝 = −𝛻𝑈𝑟𝑒𝑝 = 𝜈
1

𝜌 𝒒, 𝒒𝑜𝑏𝑠
−

1

𝜌0
⋅

1

𝜌 𝒒, 𝒒𝑜𝑏𝑠
2
⋅
𝒒 − 𝒒𝑜𝑏𝑠
𝜌(𝒒, 𝒒𝑜𝑏𝑠)

𝑈𝑟𝑒𝑝 𝒒 =

1

2
𝜈

1

𝜌 𝒒, 𝒒𝑜𝑏𝑠
−

1

𝜌0

2

𝑖𝑓 𝜌 𝒒, 𝒒𝑜𝑏𝑠 ≤ 𝜌0

0 𝑒𝑙𝑠𝑒

Exercise 5.1: Potential fields – Repulsive potentials (1)

𝜕 𝒙

𝜕𝒙
=

𝒙

𝒙

Robotics I: Introduction to Robotics | Exercise 04116

Exercise 5.1: Potential fields – Repulsive potentials (2)

Near the obstacle

𝑈𝑟𝑒𝑝 𝑥 =

1

𝑥 − 2
−

1

1.5

2

𝑖𝑓 𝑥 − 2 ≤ 1.5

0 𝑒𝑙𝑠𝑒

Else

Obstacle

Robotics I: Introduction to Robotics | Exercise 04117

Exercise 5.1: Potential fields – Repulsive potentials (3)

𝒒𝑅 =
5
5

𝒒𝑟𝑒𝑝,1 =
4
3

, 𝒒𝑟𝑒𝑝,2 =
6
4

, 𝒒𝑟𝑒𝑝,3 =
4
5

𝜌0 = 5

Robotics I: Introduction to Robotics | Exercise 04118

Exercise 5.1: Potential fields – Repulsive potentials (4)

𝒒𝑅 =
5
5

𝒒𝑟𝑒𝑝,1 =
4
3

, 𝒒𝑟𝑒𝑝,2 =
6
4

, 𝒒𝑟𝑒𝑝,3 =
4
5

𝜌0 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 =
5
5

−
4
3

=
1
2

= 12 + 22 = 5 ≈ 2.2

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 =
5
5

−
6
4

=
−1
1

= (−1)2+12 = 2 ≈ 1.4

𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 =
5
5

−
4
5

=
1
0

= 12 + 02 = 1 = 1

Robotics I: Introduction to Robotics | Exercise 04119

Exercise 5.1: Potential fields – Repulsive potentials (5)

𝒒𝑅 =
5
5

𝒒𝑟𝑒𝑝,1 =
4
3

, 𝒒𝑟𝑒𝑝,2 =
6
4

, 𝒒𝑟𝑒𝑝,3 =
4
5

𝜌0 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 ≈ 2.2 < 𝜌0
𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 ≈ 1.4 < 𝜌0
𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 = 1 < 𝜌0

 All three repulsive potentials act on the robot.

Robotics I: Introduction to Robotics | Exercise 04120

Attracting potential

 There shall be only a single minimum, located at 𝒒𝑔𝑜𝑎𝑙

Linear function of the distance to the goal:

𝐹𝒂𝒕𝒕𝒓 𝒒 = −𝛻𝑈𝑎𝑡𝑡𝑟 𝒒 = −𝑘 ⋅
𝒒 − 𝒒𝑔𝑜𝑎𝑙

‖𝒒 − 𝒒𝒈𝒐𝒂𝒍‖

Potential Fields – Attracting potential

𝑈𝑎𝑡𝑡𝑟 𝒒 = 𝑘 ⋅ ‖𝒒 − 𝒒𝑔𝑜𝑎𝑙‖

𝜕 𝒙

𝜕𝒙
=

𝒙

𝒙

Robotics I: Introduction to Robotics | Exercise 04121

Exercise 5.2: Sum of the acting potential fields (1)

𝑈 𝒒𝑅 = 𝑈𝑎𝑡𝑡𝑟 𝒒𝑅 + σ𝑖=1
3 𝑈𝑟𝑒𝑝,𝑖(𝒒𝑅) with 𝑘 = 1, 𝑣 = 1, 𝜌0 = 5

Robotics I: Introduction to Robotics | Exercise 04122

Exercise 5.2: Sum of the acting potential fields (2)

𝑈 𝒒𝑅 = 𝑈𝑎𝑡𝑡𝑟 𝒒𝑅 + σ𝑖=1
3 𝑈𝑟𝑒𝑝,𝑖(𝒒𝑅) with 𝑘 = 1, 𝑣 = 1, 𝜌0 = 5

𝑈𝑎𝑡𝑡𝑟 𝒒𝑅 = 𝑘 ⋅ 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙

Robotics I: Introduction to Robotics | Exercise 04123

Exercise 5.2: Sum of the acting potential fields (3)

𝑈 𝒒𝑅 = 𝑈𝑎𝑡𝑡𝑟 𝒒𝑅 + σ𝑖=1
3 𝑈𝑟𝑒𝑝,𝑖(𝒒𝑅) with 𝑘 = 1, 𝑣 = 1, 𝜌0 = 5

𝑈𝑎𝑡𝑡𝑟 𝒒𝑅 = 𝑘 ⋅ 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙

𝑈𝑟𝑒𝑝,𝑖(𝒒𝑅) =
1

2
𝜈

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−

1

𝜌0

2

=
1

2

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−

1

𝜌0

2

Robotics I: Introduction to Robotics | Exercise 04124

Exercise 5.2: Sum of the acting potential fields (4)

𝑈 𝒒𝑅 = 𝑈𝑎𝑡𝑡𝑟 𝒒𝑅 + σ𝑖=1
3 𝑈𝑟𝑒𝑝,𝑖(𝒒𝑅) with 𝑘 = 1, 𝑣 = 1, 𝜌0 = 5

𝑈𝑎𝑡𝑡𝑟 𝒒𝑅 = 𝑘 ⋅ 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙

𝑈𝑟𝑒𝑝,𝑖(𝒒𝑅) =
1

2
𝜈

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−

1

𝜌0

2

=
1

2

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−

1

𝜌0

2

𝑈 𝒒𝑅 = 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 +

𝑖=1

3
1

2

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−

1

𝜌0

2

Robotics I: Introduction to Robotics | Exercise 04125

Exercise 5.3: Direction of the robot (1)

Direction: Which force acts on the robot?

𝐹 𝒒𝑅 = −𝛻𝑈 𝒒𝑅

= −𝛻 𝑈𝑎𝑡𝑡𝑟 𝒒𝑅 +

𝑖=1

3

𝑈𝑟𝑒𝑝,𝑖 𝒒𝑅

= −𝛻𝑈𝑎𝑡𝑡𝑟 𝒒𝑅 +

𝑖=1

3

−𝛻𝑈𝑟𝑒𝑝,𝑖 𝒒𝑅

= −
𝒒𝑅 − 𝒒𝑧𝑖𝑒𝑙
‖𝒒𝑅 − 𝒒𝑧𝑖𝑒𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑎𝑏𝑠,𝑖
−

1

𝜌0
⋅

1

𝒒𝑅 − 𝒒𝑎𝑏𝑠,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑎𝑏𝑠,𝑖

𝒒𝑅 − 𝒒𝑎𝑏𝑠,𝑖

Robotics I: Introduction to Robotics | Exercise 04126

Exercise 5.3: Direction of the robot (2)

Richtung: Welche Kraft wirkt auf den Roboter?
𝐹 𝒒𝑅 = −𝛻𝑈 𝒒𝑅

= −𝛻 𝑈𝑎𝑡𝑡𝑟 𝒒𝑅 +

𝑖=1

3

𝑈𝑟𝑒𝑝,𝑖 𝒒𝑅

= −𝛻𝑈𝑎𝑡𝑡𝑟 𝒒𝑅 +

𝑖=1

3

−𝛻𝑈𝑟𝑒𝑝,𝑖 𝒒𝑅

= −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙

‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖
+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−

1

𝜌0
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

Robotics I: Introduction to Robotics | Exercise 04127

Exercise 5.3: Direction of the robot (4)

𝐹 𝒒𝑅 = −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙
‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−

1

𝜌0
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 =
5
5

, 𝒒𝑟𝑒𝑝,1 =
4
3

, 𝒒𝑟𝑒𝑝,2 =
6
4

, 𝒒𝑟𝑒𝑝,3 =
4
5

, 𝒒𝑔𝑜𝑎𝑙 =
12
5

, 𝜌0 = 5

Robotics I: Introduction to Robotics | Exercise 04128

Exercise 5.3: Direction of the robot (5)

𝐹 𝒒𝑅 = −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙
‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−

1

𝜌0
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 =
5
5

, 𝒒𝑟𝑒𝑝,1 =
4
3

, 𝒒𝑟𝑒𝑝,2 =
6
4

, 𝒒𝑟𝑒𝑝,3 =
4
5

, 𝒒𝑔𝑜𝑎𝑙 =
12
5

, 𝜌0 = 5

𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 =
5
5

−
12
5

=
7
0

𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 7

𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 =
5
5

−
4
3

=
1
2

𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 =
5
5

−
6
4

=
−1
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 = 2

𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 =
5
5

−
4
5

=
1
0

𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 = 1

Robotics I: Introduction to Robotics | Exercise 04129

Exercise 5.3: Direction of the robot (6)

𝐹 𝒒𝑅 = −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙
‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−
1

5
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 =
7
0

, 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 7, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 =
1
2

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 =
−1
1

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 = 2, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 =
1
0

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 = 1

𝐹 𝒒𝑅 =

Robotics I: Introduction to Robotics | Exercise 04130

Exercise 5.3: Direction of the robot (7)

𝐹 𝒒𝑅 = −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙
‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−
1

5
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 =
−7
0

, 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 7, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 =
1
2

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 =
−1
1

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 = 2, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 =
1
0

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 = 1

𝐹 𝒒𝑅 = −
−1
0

+

Robotics I: Introduction to Robotics | Exercise 04131

Exercise 5.3: Direction of the robot (8)

𝐹 𝒒𝑅 = −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙
‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−
1

5
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 =
−7
0

, 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 7, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 =
1
2

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 =
−1
1

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 = 2, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 =
1
0

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 = 1

𝐹 𝒒𝑅 =
1
0

+
1

5
−

1

5
⋅
1

5
⋅
1

5

1
2

Robotics I: Introduction to Robotics | Exercise 04132

Exercise 5.3: Direction of the robot (9)

𝐹 𝒒𝑅 = −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙
‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−
1

5
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 =
−7
0

, 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 7, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 =
1
2

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 =
−1
1

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 = 2, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 =
1
0

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 = 1

𝐹 𝒒𝑅 =
1
0

+
5− 5

125
⋅
1
2

+

Robotics I: Introduction to Robotics | Exercise 04133

Exercise 5.3: Direction of the robot (10)

𝐹 𝒒𝑅 = −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙
‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−
1

5
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 =
−7
0

, 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 7, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 =
1
2

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 =
−1
1

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 = 2, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 =
1
0

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 = 1

𝐹 𝒒𝑅 =
1
0

+
5− 5

125
⋅
1
2

+
1

2
−

1

5
⋅
1

2
⋅
1

2

−1
1

Robotics I: Introduction to Robotics | Exercise 04134

Exercise 5.3: Direction of the robot (11)

𝐹 𝒒𝑅 = −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙
‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−
1

5
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 =
−7
0

, 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 7, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 =
1
2

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 =
−1
1

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 = 2, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 =
1
0

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 = 1

𝐹 𝒒𝑅 =
1
0

+
5− 5

125
⋅
1
2

+
10−2 2

40
⋅
−1
1

+

Robotics I: Introduction to Robotics | Exercise 04135

Exercise 5.3: Direction of the robot (12)

𝐹 𝒒𝑅 = −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙
‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−
1

5
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 =
−7
0

, 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 7, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 =
1
2

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 =
−1
1

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 = 2, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 =
1
0

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 = 1

𝐹 𝒒𝑅 =
1
0

+
5− 5

125
⋅
1
2

+
10−2 2

40
⋅
−1
1

+
1

1
−

1

5
⋅
1

1
⋅
1

1

1
0

Robotics I: Introduction to Robotics | Exercise 04136

Exercise 5.3: Direction of the robot (13)

𝐹 𝒒𝑅 = −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙
‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−
1

5
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 =
−7
0

, 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 7, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 =
1
2

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 =
−1
1

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 = 2, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 =
1
0

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 = 1

𝐹 𝒒𝑅 =
1
0

+
5− 5

125
⋅
1
2

+
10−2 2

40
⋅
−1
1

+
4

5
⋅
1
0

Robotics I: Introduction to Robotics | Exercise 04137

Exercise 5.3: Direction of the robot (14)

𝐹 𝒒𝑅 = −
𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙
‖𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙‖

+

𝑖=1

3
1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
−
1

5
⋅

1

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖
2 ⋅

𝒒𝑹 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑟𝑒𝑝,𝑖

𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 =
−7
0

, 𝒒𝑅 − 𝒒𝑔𝑜𝑎𝑙 = 7, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 =
1
2

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,1 = 5

𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 =
−1
1

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,2 = 2, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 =
1
0

, 𝒒𝑅 − 𝒒𝑟𝑒𝑝,3 = 1

𝐹 𝒒𝑅 =
1
0

+
5− 5

125
⋅
1
2

+
10−2 2

40
⋅
−1
1

+
4

5
⋅
1
0

≈
1.643
0.224

Direction:
𝐹 𝒒𝑅

0.224
≈

7.3
1

Robotics I: Introduction to Robotics | Exercise 04138

Exercise 5.3: Direction of the robot (15)

(0, 0)

1

2

3
4

5

2 4 6 8 10 12

6

𝒒𝑅 =
5
5

𝒒𝑟𝑒𝑝,1 =
4
3

, 𝒒𝑟𝑒𝑝,2 =
6
4

, 𝒒𝑟𝑒𝑝,3 =
4
5

𝒒𝑔𝑜𝑎𝑙 =
12
5

Robot: 𝒒𝑅
Obstacles:
𝒒𝑟𝑒𝑝,1, 𝒒𝑟𝑒𝑝,2, 𝒒𝑟𝑒𝑝,3

Goal: 𝒒𝑔𝑜𝑎𝑙

1. Which repulsive potentials act
on the robot with 𝜌0 = 5?

2. Determine 𝑈(𝒒𝑅) as the
sum of the acting potential fields.

3. Determine the direction in which the
robot would move.

𝐹 𝒒𝑅
0.224

≈
7.3
1

Robotics I: Introduction to Robotics | Exercise 04139

Simox is a software toolbox for …

Modeling robots, objects, scenes

Grasp planning & motion planning

Kinematic & physical simulation

…

Hier: Plan a motion using
RRT on ARMAR-III

Bonus: RRT in Simox (1)

Robotics I: Introduction to Robotics | Exercise 04140

Simox is a software toolbox for …

Modeling robots, objects, scenes

Grasp planning & motion planning

Kinematic & physical simulation

…

Hier: Plan a motion using
RRT on ARMAR-III

Bonus: RRT in Simox (2)

Robotics I: Introduction to Robotics | Exercise 04141

Setup collision
detection

Register collision
models

Bonus: RRT in Simox: Code (1)

https://git.h2t.iar.kit.edu/sw/simox/simox/-/blob/master/MotionPlanning/examples/GraspRRT/GraspRrtWindow.cpp#L816

Robotics I: Introduction to Robotics | Exercise 04142

Get parameters
from GUI

Setup planner,
Set start config,
Start planning

Bonus: RRT in Simox: Code (2)

https://git.h2t.iar.kit.edu/sw/simox/simox/-/blob/master/MotionPlanning/examples/GraspRRT/GraspRrtWindow.cpp#L816

// ...

Robotics I: Introduction to Robotics | Exercise 04143

Planning

Get solution

Postprocess
solution (smooting)

Error handling

Update GUI

Bonus: RRT in Simox: Code (3)

https://git.h2t.iar.kit.edu/sw/simox/simox/-/blob/master/MotionPlanning/examples/GraspRRT/GraspRrtWindow.cpp#L816

// ...

Robotics I: Introduction to Robotics | Exercise 04144

Motion Planning: Problem Classes (1)

Class a

Known: complete world model

complete set of constraints

Required: collision-free trajectory from start to goal state

Class b

Known: incomplete world model
incomplete set of constraints

Required: collision-free trajectory from start to goal state

Problem: collision with unknown objects

Robotics I: Introduction to Robotics | Exercise 04145

Motion Planning: Problem Classes (2)

Class c
Known: time-variant world model (moving obstacles)
Required: collision-free trajectory from start to goal state
Problem: changing obstacles in time and space

Class d
Known: time-variant world model
Required: trajectory to moving goal (rendezvous problem)
Problem: changing goal state in time and space

Class e
Known: no world model
Required: collision-free trajectory from start to goal state
Problem: Mapping (creation of world model)

